COMPUTATIONAL STUDY OF (2*E*)-1-(4-chlorophenyl)-3-(4-nitrophenyl) prop-2-en-1-one BY DFT

Dr. Raksha Gupta

Associate Professor, Department of Chemistry, A.S. (P.G.) College, Mawana, Meerut

ABSTRACT— Optimized geometrical structure, atomic Mulliken charges. Nonlinear optical (NLO) properties And thermodynamic properties of the title compound (2E)-1-(4-chlorophenyl)-3-(4-nitrophenyl) prop-2-en-1-one has been investigated by using ab initio quantum chemical computational studies dipole moment μ , the mean polarizability α_0 , the anisotropy of polarizability $\Delta \alpha$ and the mean first hyper polarizability $\beta 0$, using the x, y, z components were calculated by B3LYP method with 6-31G(d,p), basis sets to investigate the NLO properties of the title compound.

INTRODUCTION

Chalcones are pharmacologically valuable moieties possessing 1,3diphenyl prop-2-ene-1-one (-CHCH-CO-) as a core structure in which two aromatic rings are linked by first and third carbon of α . β unsaturated carbonyl skeleton.

General structure of chalcones (1,3diphenyl prop-2-ene-1-one)

Due to the extended conjugation, the complete delocalisation of p electrons on both the benzene rings makes it good from bioactivity aspect. Recently many chalcones have been reported to have antimicrobial activity due the presence of a reactive α , β unsaturated keto skeleton[1] In recent years a variety of chalcones have been

reviewed for their cytotoxic, anticancer chemoprevenive and mutagenic as well as antiviral, insecticidal and enzyme inhibitory properties[2,3]. A number of chalcones having hydroxyl, alkoxy groups in different position have been reported to possess antibacterial[4], antiulcer[5], antifungal[6], antioxidant[7], vasodilatory[8], antimitotic[9], antimalarial[10], antileshmanial[11]

Chalcones are important intermediates in the synthesis of many pharmaceuticals [12-14]. In addition substituted chalcones are used as better nonlinear optical materials [15-24]. In modern years, chalcones have been used in the field of material science as optical limiting [25], electrochemical sensing [26] and Langmuir film [27]. Appreciation of these findings motivated us to carry out computational study of chalcones.

MATERIALS AND METHODS

Theoretical Calculation: The entire calculation was performed at DFT levels on a personal laptop using Gaussian(R) 09 program [28] program package, invoking gradient geometry optimization [28,29]. In the present study, the DFT/B3LYP/6-31G

(d,p) basis set level was used to calculate the optimized parameters and vibrational wave numbers of the title molecule. The vibrational frequency assignments were made with a high degree of accuracy.

RESULTS AND DISCUSSION

GEOMETRICAL ANALYSIS:

The optimised molecular structure of the mentioned compound (2E)-1-(4-chlorophenyl)-3-(4-nitrophenyl) prop-2-en-1-one is shown in Figure 1. The geometrical parameters of the mentioned compound are calculated using B3LYP with 6-31G (d,p) level of theory. In this study title molecule consist of two phenyl and a prop-2-en-1-one moieties. The optimized bond lengths, bond angles and dihedral angles of the compound studied are listed in Table 1 is in accordance with atom numbering scheme as shown in Fig. 1.

Fig. 1

 TABLE-1-Calculated Optimized Geometrical Parameters of (2*E*)-1-(4-chlorophenyl)-3-(4-nitrophenyl) prop-2-en-1-one, at B3LYP/6-31G (d,p): bond length (Å), bond angle(°), dihedral angles(°)

G . N	Atoms of	Bond length	Angle between	Bond angle (°)	Dihedral angle between	Dihedral angle
S. No.	molecule	(Å)	atoms		atoms	(°)
1	R(1,2)	1.54	A(2,1,6)	119.8865	D(6,1,2,3)	0.0
3	R(1,6)	1.2584	A(2,1,21)	119.7966	D(6,1,2,4)	180.0
3	R(1,21)	1.2731	A(6,1,21)	120.3168	D(21,1,2,3)	-179.8959
4	R(2,3)	1.07	A(1,2,3)	119.8865	D(21,1,2,4)	0.1041
5	R(2,4)	1.3552	A(1,2,4)	120.2269	D(2,1,21,20)	-179.9773
6	R(4,5)	1.07	A(3,2,4)	119.8865	D(2,1,21,22)	-0.1516
7	R(4,9)	1.4021	A(2,4,5)	120.2269	D(6,1,21,20)	0.1272
8	R(5,26)	0.5705	A(2,4,9)	117.2773	D(6,1,21,22)	179.9529
9	R(7,8)	1.3952	A(5,4,9)	122.4957	D(1,2,4,5)	0.0
10	R(7,12)	1.3948	A(4,5,26)	141.253	D(1,2,4,9)	180.0
11	R(7,13)	1.0996	A(8,7,12)	119.9985	D(3,2,4,5)	180.0
12	R(8,9)	1.3947	A(8,7,13)	119.9972	D(3,2,4,9)	0.0
13	R(8,14)	1.0997	A(12,7,13)	120.0043	D(2,4,5,26)	-0.1912
14	R(9,10)	1.3954	A(7,8,9)	120.0086	D(9,4,5,26)	179.8088
15	R(10,11)	1.3948	A(7,8,14)	119.9808	D(2,4,9,8)	180.0
16	R(10,15)	1.0997	A(9,8,14)	120.0106	D(2,4,9,10)	0.0587
17	R(11,12)	1.3951	A(4,9,8)	117.059	D(5,4,9,8)	0.0
18	R(11,16)	1.0998	A(4,9,10)	122.9468	D(5,4,9,10)	-179.9413
19	R(12,28)	1.47	A(8,9,10)	119.9942	D(4,5,26,22)	0.4751
20	R(17,18)	1.3952	A(9,10,11)	119.994	D(12,7,8,9)	0.0323
21	R(17,22)	1.3948	A(9,10,15)	119.9811	D(12,7,8,14)	179.9532
22	R(17,23)	1.0996	A(11,10,15)	120.0249	D(13,7,8,9)	-179.9729
23	R(18,19)	1.3947	A(10,11,12)	120.0047	D(13,7,8,14)	-0.052
24	R(18,27)	1.76	A(10,11,16)	120.0113	D(8,7,12,11)	0.0149
25	R(19,20)	1.3954	A(12,11,16)	119.984	D(8,7,12,28)	179.9892
26	R(19,24)	1.0997	A(7,12,11)	120.0	D(13,7,12,11)	-179.9798
27	R(20,21)	1.3948	A(7,12,28)	120.008	D(13,7,12,28)	-0.0056

		1				1
28	R(20,25)	1.0997	A(11,12,28)	119.992	D(7,8,9,4)	180.0
29	R(21,22)	1.3951	A(18,17,22)	119.9985	D(7,8,9,10)	-0.0568
30	R(22,26)	1.0996	A(18,17,23)	119.9972	D(14,8,9,4)	0.0791
31	R(28,29)	1.1993	A(22,17,23)	120.0043	D(14,8,9,10)	-179.9777
32	R(28,30)	1.1993	A(17,18,19)	120.0086	D(4,9,10,11)	179.9738
33			A(17,18,27)	119.9808	D(4,9,10,15)	-0.0568
34			A(19,18,27)	120.0106	D(8,9,10,11)	0.0341
35			A(18,19,20)	119.9942	D(8,9,10,15)	-179.9964
36			A(18,19,24)	120.0128	D(9,10,11,12)	0.0131
37			A(20,19,24)	119.993	D(9,10,11,16)	-179.9995
38			A(19,20,21)	119.994	D(15,10,11,12)	-179.9563
39			A(19,20,25)	119.9811	D(15,10,11,16)	0.0311
40			A(21,20,25)	120.0249	D(10,11,12,7)	-0.0376
41			A(1,21,20)	119.7934	D(10,11,12,28)	179.9881
42			A(1,21,22)	120.2017	D(16,11,12,7)	179.975
43			A(20,21,22)	120.0047	D(16,11,12,28)	0.0007
44			A(17,22,21)	120.0	D(7,12,28,29)	90.0102
45			A(17,22,26)	120.008	D(7,12,28,30)	-89.9898
46			A(21,22,26)	119.992	D(11,12,28,29)	-90.0155
47			A(5,26,22)	158.3021	D(11,12,28,30)	89.9845
48			A(12,28,29)	118.3934	D(22,17,18,19)	0.0323
49			A(12,28,30)	118.3927	D(22,17,18,27)	179.9532
50			A(29,28,30)	123.2139	D(23,17,18,19)	-179.9729
51					D(23,17,18,27)	-0.052
52					D(18,17,22,21)	0.0149
53					D(18,17,22,26)	179.9892
54					D(23,17,22,21)	-179.9798
55					D(23,17,22,26)	-0.0056
56					D(17,18,19,20)	-0.0568
57					D(17,18,19,24)	179.9619
58					D(27,18,19,20)	-179.9777
59					D(27,18,19,24)	0.041
60					D(18,19,20,21)	0.0341
61					D(18,19,20,25)	-179.9964
62					D(24,19,20,21)	-179.9846
63					D(24,19,20,25)	-0.0151
64					D(19,20,21,1)	179.8392
65					D(19,20,21,22)	0.0131
66					D(25,20,21,1)	-0.1303
67					D(25,20,21,22)	-179.9563
68					D(1,21,22,17)	-179.8629
69					D(1,21,22,26)	0.1628
70					D(20,21,22,17)	-0.0376
71					D(20,21,22,26)	179.9881
72					D(17,22,26,5)	179.6259
73					D(21,22,26,5)	-0.3998

Vibrational Assignments:

The title molecule undergoes 84 fundamental modes of vibrations. Vibrational spectral assignments have been carried on the recorded FT-IR and FT- Raman spectra based on the theoretically predicated wave number by B3LYP/6-31G (d, p) basis set and are presented in figs. 2, 3 and table 2.

C-H Vibrations: The aromatic structure shows the presence of C–H stretching vibrations in the region 3181-3214 cm–1 [34, 35], which is the characteristic region for the identification of the C–H stretching vibrations. In this region, the bands are not affected appreciably by the nature of the substituents. In this study, the C-H stretching bands observed at 3059 cm-1in infrared spectrum and 3059 cm-1in Raman spectrum and their corresponding harmonic value lies at 3046 cm-1 (mode no: 75-78) with the help of TED assignments \geq 90%.

. **C=O vibrations:** A carbonyl group is an organic functional group composed of a carbon atom double-bonded to an oxygen atom. In cyclic ketones, the characteristic IR absorption frequencies of C=O group have been studied [36, 37]. The loan pair of electrons on oxygen also determines the nature of the carbonyl group. Normally carbonyl group vibrations occur in the region 1730-1654cm-1 [38]. In our present study, the carbonyl stretching vibration is observed as a medium band in FT-IR at 1710 cm-1 and in the Raman counterpart it is observed at 1650 cm-1 as a weak band. The corresponding harmonic value lies at 1636cm-1 with pure mode of vibrations (TED=86%). The C=O in plane bending vibrations are observed at 524 cm-1 (m) in infrared spectrum and 523 cm-1 (W) in Raman spectrum. The calculated value appeared at 527 cm-1 (mode no.22,23).

CH2 vibrations: The atoms in a CH2 group, commonly found in organic compounds, can vibrate in six different ways: symmetric and asymmetric stretching, scissoring, rocking, wagging and twisting. In aromatic organic compound, the C–H stretching vibrations are usually observed below 3000 cm–1 [39, 40]. These assignments are also supported by the literature Padmaja et al., [41] in addition to TED output.

C-C Vibrations: Socrates [42] mentioned that the presence of conjugate substituent such as C=C causes heavy doublet formation around the region 1625-1575 cm-1. The very strong band is appeared at 1598 cm-1 in infrared spectrum and 1597 cm-1, 1211 cm-1, 70 cm-1 in Raman spectrum due to α , β unsaturated C=C stretching vibrations in the carbonyl position [43]. In the present study, the C=C stretching vibration observed at 1581 cm-1 in IR/1597 cm-1 in FT–Raman spectrum and its corresponding harmonic values lies at 1541 cm-1 (mode nos: 62) with the help of TED assignments \geq 23%. The good agreement allows us to perform the assignments of IR and Raman bands in the whole studied spectral regions.

Mode	Frequency	IR	Raman	DenolarP	Depolar-U
84	3254 09	0.9830	88 8013	0 2314	0 3758
83	3253.24	0.8151	89 9755	0.2630	0.4164
82	3232.43	2.6034	199 9637	0.1656	0.2842
81	3229.44	3 72.64	53 8200	0 1463	0.2553
80	3219.69	0.1231	70.4773	0.7018	0.8247
79	3217.97	4.9895	37.9317	0.3567	0.5259
78	3214.52	3.2406	35.6160	0.6307	0.7735
77	3199.18	11.8986	45.2256	0.3883	0.5593
76	3195.45	6.4139	49.7655	0.4522	0.6228
75	3181.03	5.5249	47.2297	0.2840	0.4424
74	1730.88	220.5206	523.0595	0.2002	0.3335
73	1691.23	38.3325	1621.6432	0.3284	0.4944
72	1665.44	114.2756	149.5379	0.3385	0.5058
71	1654.02	16.0913	2285.7018	0.3656	0.5354
.70	1645.98	112.5548	317.6660	0.3893	0.5604
69	1617.33	14.3204	15.7399	0.1762	0.2996
68	1612.07	93.6907	48.4348	0.3664	0.5363
67	1541.53	6.5270	19.3744	0.3006	0.4623
66	1533.28	14.7569	4.3262	0.3963	0.5676
65	1458.21	22.8178	60.6480	0.3701	0.5403
64	1442.32	18.9691	12.1852	0.2336	0.3788
63	1395.27	453.1904	824.5477	0.2975	0.4586
62	1386.70	20.4268	17.9401	0.6002	0.7501
61	1363.44	5.3813	40.7814	0.2483	0.3978
60	1345.94	33.1902	5.2929	0.3106	0.4740
59	1334.21	27.5704	1.5865	0.5616	0.7192
58	1333.86	8.1894	3.1547	0.2378	0.3842
57	1314.87	257.1547	173.7814	0.4511	0.6217
56	1287.49	181.6148	404.8403	0.2176	0.3574
55	1241.29	30.6219	251.0776	0.3682	0.5382
54	1217.21	0.5336	101.1334	0.2477	0.3971
53	1211.46	31.6886	5.6222	0.6684	0.8012
52	1141.21	3.4868	1.0789	0.5/13	0./2/1
50	1139.63	7.2761	1.9/8/	0.4964	0.6634
50	1132.38	57.8680	258.5256	0.2614	0.4145
49	1112.41	123.0439	1/.153/	0.2386	0.3853
48	1090.30	37.3440	6 2202	0.1769	0.3007
4/	1033.37	23.10/8	0.2295	0.2137	0.3321
45	1032.00	62 23/2	1 5834	0.5205	0.4032
44	991 77	4 0979	5 4436	0.517	0.7579
43	984 58	1 7258	2 0087	0.0102	0.5853
42	982.49	0.2466	0.9226	0.4980	0.6649
41	978.05	4 2749	1 6836	0.6931	0.8188
40	912.77	9 9279	20 7163	0.4835	0.6518
39	885.53	35.2012	9.7171	0.1748	0.2976
38	871.43	18.3186	5.8777	0.1860	0.3137
37	855.13	63.1618	22.6451	0.2576	0.4096
36	849.53	1.4082	6.2722	0.4324	0.6037
35	847.94	7.7498	5.9062	0.5076	0.6734
34	839.50	19.8294	16.7163	0.3533	0.5222
33	784.49	40.5597	7.5313	0.5141	0.6791
32	769.18	25.4833	6.1349	0.3459	0.5141
31	743.50	8.8102	11.7490	0.2107	0.3481
30	706.33	11.2858	1.8561	0.2583	0.4106
29	692.36	6.0494	12.8411	0.1091	0.1968

TABLE-2: Calculated Frequencies of the Title Compound

28	673.36	4.5414	1.6132	0.6069	0.7554
27	654.06	13.5222	3.9820	0.3694	0.5395
26	643.86	1.9525	8.2927	0.7323	0.8454
25	641.35	0.9546	7.5330	0.7490	0.8565
24	570.81	11.9872	6.3719	0.1719	0.2933
23	538.27	1.1132	3.1579	0.7124	0.8321
22	511.56	14.0989	2.9032	0.3273	0.4932
21	488.21	8.7039	0.6963	0.3525	0.5213
20	483.42	13.4558	0.4231	0.7105	0.8308
19	428.78	9.5099	1.3953	0.4367	0.6079
18	424.76	1.1785	1.8354	0.4067	0.5782
17	418.99	0.2053	0.0631	0.6291	0.7723
16	362.10	3.5888	1.2104	0.3518	0.5205
15	342.00	2.0216	4.5597	0.5470	0.7072
14	312.56	0.3002	1.2237	0.5332	0.6956
13	298.47	0.2328	1.5871	0.5062	0.6721
12	260.83	2.8877	4.2213	0.7499	0.8571
11	237.36	0.5854	2.0507	0.7013	0.8244
10	183.60	2.8380	2.6821	0.4767	0.6456
9	170.66	3.0400	2.8891	0.7401	0.8506
8	139.49	4.4033	3.9230	0.5906	0.7426
7	108.58	3.2206	1.4550	0.7305	0.8443
6	89.17	1.2860	1.2543	0.6204	0.7657
5	74.45	3.7878	4.6121	0.7265	0.8416
4	63.72	0.0324	0.2773	0.7376	0.8490
3	35.34	1.7774	3.8676	0.7393	0.8501
2	29.02	0.5619	5.1282	0.7057	0.8275
1	18.60	0.0519	6.6094	0.7500	0.8571

Thermodynamic Properties

The standard thermodynamic functions: heat capacity (CV), entropy (S) and enthalpy (E) based on the Vibrational analysis using the B3LYP/6-31G (d,p) level to Investigate thermodynamically properties of the title compound Were calculated and listed in Table 3 the frequency calculations compute the zero point energies, thermal correction to internal energy and entropy as well as the heat capacity for a molecular system. These functions describe the thermodynamic stability of the system at the given conditions of pressure and temperature.

TABLE

Zero-point correction	0.218333 (Hartree/Particle)
Thermal correction to Energy	0.235159
Thermal correction to Enthalpy	0.236103
Thermal correction to Gibbs Free Energy	0.170230
Sum of electronic and zero-point Energies	-1317.911607
Sum of electronic and thermal Energies	-1317.894781
Sum of electronic and thermal Enthalpies	-1317.893837
Sum of electronic and thermal Free Energies	-1317.959710

TABLE-4

	Enthalpy (E) (Thermal)	Heat Capacity (CV)	Entropy(S)
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	147.565	63.135	138.642
Electronic	0.000	0.000	0.000
Translational	0.889	2.981	42.861
Rotational	0.889	2.981	35.201
Vibrational	145.787	57.174	60.580
Vibration 1	0.593	1.986	6.779
Vibration 2	0.593	1.984	5.896

Vibration 3	0.594	1.982	5.504	
Vibration 4	0.597	1.972	4.339	
Vibration 5	0.599	1.966	4.032	
Vibration 6	0.602	1.957	3.678	
Vibration 7	0.606	1.942	3.294	
Vibration 8	0.615	1.914	2.811	
Vibration 9	0.626	1.879	2.428	
Vibration 10	0.631	1.862	2.291	
Vibration 11	0.656	1.783	1.823	
Vibration 12	0.669	1.744	1.656	
Vibration 13	0.692	1.677	1.425	
Vibration 14	0.701	1.650	1.349	
Vibration 15	0.721	1.592	1.203	
Vibration 16	0.736	1.550	1.113	
Vibration 17	0.782	1.429	0.895	
Vibration 18	0.787	1.416	0.876	
Vibration 19	0.790	1.408	0.863	
Vibration 20	0.840	1.287	0.701	
Vibration 21	0.844	1.276	0.688	
Vibration 22	0.867	1.224	0.630	
Vibration 23	0.893	1.165	0.569	
Vibration 24	0.927	1.094	0.503	

Nonlinear optical effects:

NLO is the important role of current research because it provides the key functions of frequency shifting, optical logic, optical modulation, optical switching and optical memory for the technologies in areas such as telecommunications, signal processing and optical interconnection [30,31].

The total static dipole moment μ , the mean polarizability α_0 , the anisotropy of polarizability $\Delta \alpha$ and the mean first hyper polarizability $\beta 0$, using the x, y, z components are defined as [32]

$$\begin{split} & \mu = (\mu_{x}^{2} + \mu_{y}^{2} + \mu_{z}^{2})^{1/2} \\ & \alpha_{0} = \frac{(\alpha xx + \alpha yy + \alpha zz)}{3} \\ & \Delta \alpha = \frac{1}{\sqrt{2}} \left[(\alpha_{xx} - \alpha_{yy})^{2} + (\alpha_{yy} - \alpha_{zz})^{2} + (\alpha_{zz} - \alpha_{xx})^{2} + 6(\alpha_{xy}^{2} + \alpha_{yz}^{2} + \alpha_{zz}^{2}) \right]^{1/2} \\ & \beta_{0} = \left[(\beta_{xxx} + \beta_{xyy} + \beta_{xzz})^{2} + (\beta_{yyy} + \beta_{yzz} + \beta_{yxx})^{2} + (\beta_{zzz} + \beta_{zxx} + \beta_{zyy})^{2} \right]^{1/2} \end{split}$$

Calculated dipole moment (μ , in Debye), mean polarizability (α_0 , in a.u.), anisotropy of polarizability ($\Delta \alpha$, in a.u.) and first hyper polarizability (β , in a.u.) of (2*E*)-1-(4-chlorophenyl)-3-(4-nitrophenyl) prop-2-en-1-one by DFT by B3LYP/6-31G(d,p). Dipole moment (field-independent basis, Debye): is given in Table-4

 Table 5: Calculated dipole moment (μ, in Debye), mean polarizability (α₀, in a.u.), anisotropy of polarizability (Δα, in a.u.) and first hyper polarizability (β, in a.u.) of (2*E*)-1-(4-chlorophenyl)-3-(4-nitrophenyl) prop-2-en-1-one.

Dipole Moment µ in Debye			Polarizability α in a.u.		Hyper polarizability β in a.u.	
μ _X	-2.0936	α_{XX}	-150.2854	β_{XXX}	-238.6193	
μ _Y	-1.4740	α_{YY}	-122.7101	β_{YYY}	-58.5140	
μ _Z	0.0010	α_{ZZ}	-125.7387	β_{ZZZ}	-0.0130	
Tot µ	2.5605	α_{XY}	8.0679	β_{XYY}	58.4810	
		α_{XZ}	-0.0027	β_{XXY}	76.9751	
		α_{YZ}	0.0103	β_{XXZ}	0.0067	
				β_{XZZ}	-10.5104	
				β_{YZZ}	1.6611	
				β_{YYZ}	0.0153	
		α_0	-132.9114	β_{XYZ}	0.0010	
		Δα	263.6921	β ₀	191.7077	

Mulliken Atomic charges:

In the uses of quantum mechanical calculation to molecular system, the calculation of effective Mulliken atomic charge plays an important role of the system [33]. The charges are calculated by DFT/ B3LYP/6-31G (d, p) level of theory which is tabulated in table 7 and displayed in fig 7. The Mulliken charge is directly related to the dipole moment, molecular polarization, electronic structure, vibrational properties of the molecule, and quantifies how the electronic structure changes under atomic displacement; it is therefore related directly to the chemical bonds present in the molecule. The maximum negative charge belongs to 6 'O' atom -0.518996) high positive charge belongs 28 "N"atom (0.366169).

1 C	0.302051	11 C	-0.146747	21 C	0.144474
2 C	-0.249664	12 C	0.270869	22 C	-0.072970
3 H	0.157326	13 H	0.164181	23 H	0.153057
4 C	-0.070287	14 H	0.145649	24 H	0.164720
5 H	0.122513	15 H	0.165722	25 H	0.187008
6 O	-0.518996	16 H	0.167504	26 H	0.155180
7 C	-0.135818	17 C	-0.201279	27 Cl	0.000464
8 C	-0.203355	18 C	-0.041025	28 N	0.366169
9 C	0.152596	19 C	-0.150747	29 O	-0.371298
10 C	-0.160395	20 C	-0.125585	30 O	-0.371316

Table 6:	the	muliken	Atomic	Charges	of	chalcone
				B		

HOMO - LUMO Energy: The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) plots of the title compound is shown in fig 5. The HOMO is orbital that acts as an electron donor and the LUMO is the orbital that acts as an electron acceptor. The energy value of HOMO is -0.25826ev and LUMO= -0.11214 ev . The energy difference is - 0.14612 ev which illustrates the stability of chalcone.

HOMO= -0.25826ev

REFERENCES

- 1. Prasad YR, Rao AL and Rambabu R. Synthesis and Antimicrobial Activity of some Chalcone Derivativs. E-Journal of Chemistry, 2008;5(3):461-466.
- 2. Won SJ, Liu CT, Tsao LT, Ko HH, Wang JP, Lin CN. Synthetic chalcones as potential anti-inflammatory and cancer chemo protective agents. European Journal of Medicinal Chemistry, 2005;40: 103-112.
- 3.Yu DC, Panfilova LV, Boreko EI. Synthesis and antiviral activity of unsaturated ketones of thiopene series. Pharm. Chem, 1982;16: 103-105.
 4.Liu XL, Xu YJ, Go ML. Functionalized chalcones with basic functionalities have antibacterial activity against drug sensitive Staphylococcus aureus. European Journal of Medicinal Chemistry, 2008; 43:681-1687.
- 5.Jeffrey JA, Pamela EO, Jared LR, Jeffrey NJ, Peter DM, Linda MO, Pamela SW, and Beth LE. Synthesis and biological evaluation of
- flavonoids and related compounds as gastro-protective agents. Bioorganic & Medicinal Chemistry Letters, 1996; 6 (8): 995-998. 6.Lahtchev KL, Batovska DI, Parushev SP, Ubiyvovk VM, Sibirny AA. Antifungal activity of chalcones: A mechanistic study using various
- yeast strains. European Journal of Medicinal Chemistry, 2008; 43: 2220-2228.

- 7.Detsi A, Majdalani Maya, Christos AK, Dimitra HL, Panagiotis K. Natural and synthetic 20-hydroxy-chalcones and aurones: Synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity. Bioorganic & Medicinal Chemistry, 2009; 17: 8073–8085.
- 8.Dong X, Chen J, Jiang C, Liu T, Hu Y.Design, synthesis, and biological evaluation of prenylated chalcones as vasorelaxant agents. Arch Pharm (Weinheim), 2009; 342(7):428-32.
- 9. Rao YK, Fang SH, Tzeng YM. Synthesis and biological evaluation of 3,4,5-trimethoxychalcone analogues as inhibitors of nitric oxide production and tumor cell proliferation. Bioorganic & Medicinal Chemistry, 2009; 17:7909–7914.
- 10.Ram VJ, Saxena A, Srivastava S and Chandra S. Oxygenated chalcones and bischalcones as potential antimalarial agents. Bioorganic & Medicinal Chemistry Letters 2000;10: 2159-2161.
- 11. Liu M, Wilairat P, Croft SL, Choo AL and Goa ML. *Structure–Activity Relationships of antileishmanial and antimalarial Chalcones*. Bioorganic & Medicinal Chemistry ,2003;11: 2729–2738.
- A, Solankee, S.Lad, S. Solankee, G. Patel, Chalcones, pyrazolines and aminopyrimidines as antibacterial agents, *In J Chem*, 2009,48B,1442.
- 13 .A.R. Trivedi, D.K. Dodiya, N.R Ravat, V.H Shah, A review on Chalcones and its importance, PharmaTutor, arkivoc, 2008,131, xi.
- C. Gu, L. Liu, Y.Suj, J. Zhao D. Wang Y.Chen, Highly enantioselective Michael additions of α-cyanoacetate with chalcones catalyzed by bifunctional cinchona-derived thiourea organocatalyst, *Tetrahedron Asymmetry*, 2007, 18, 455.
- 15 Y. Goto, A. Hayashi, Y. Kimura & M.Nakayam, Second harmonic generation and crystal growth of substituted thienyl chalcone, *J. Cryst. Growth*, **1991**, 108, 688–698.
- 16.B.K. Sarojini, B. Narayana, B.V. Ashalatha, J. Indira & K.G. Lobo, Synthesis, crystal growth and studies on non-linear optical property of new chalcones, *J.Cryst.Growth.*, 2000, 295, 54–59.
- P.S. Patil, S.M. Dharmaprakash, Hoong-Kun Fun & M.S.Karthikeyan, Synthesis, growth and characterization of 4-OCH3-4'-nitrochalcone single crystal: A potential NLO material, J. Cryst. Growth, 2006, 297, 111–116.
- H.J. Ravindra, W.T.A. Harrison, M.R. Suresh Kumar & S.M. Dharmaprakash, Synthesis, crystal growth, characterization and structure– NLO property relationship in 1,3-bis(4-methoxy phenyl)prop-2-en-1-one single crystal, *J. Cryst. Growth*, 2009, 311, 310–315.
- 19. A. John Kiran, H.W. Lee, H.J. Ravindra, S.M. Dharmaprakash, K. Kim, H.Lim, F. Rotermund, Designing novel chalcone single crystals with ultrafast nonlinear optical responses and large multi-photon absorption coefficients, *Curr. Appl. Phys.*, **2010**, 10, 1290–1296.
- H.R. Manjunath, P.C.Rajesh Kumar, S.Naveen, V. Ravindrachary, M.A.Sridhar, J.S. Prasad, P. Karegoudar, Growth, characterization, crystal and molecular structure studies of 1-(2'-thio phen)-3-(2,3,5-trichlorophenyl)-2-propen-1-one, J. Cryst. Growth, 2011, 327, 161–166.
- E.D. Dsilva, G.K. Podagatlapalli, S.Venugopal Rao & S.M. Dharmaprakash, Structural, optical and electrical characteristics of a new NLO crystal, Opt. Laser Tech., 2012, 44, 1689–1697.
- 22. L.Joseph, D. Sajan, V. Shettigar, K. Chaitanya, N. Misra, T. Sundius & I. Nemec, Synthesis, crystal growth, thermal studies and scaled quantum chemical studies of structural and vibrational spectra of the highly efficient organic NLO crystal: 1-(4-Aminophenyl)-3-(3,4-dimethoxyphenyl)-prop-2-en-1-one, *Mater. Chem. Phys.*, 2013, 141, 248–262.
- V.Meenatchi, K. Muthu, M. Rajasekar & S.P.Meenakshisundaram, Crystal growth and second harmonic generation efficiency of a chalcone derivative, *Physica B*, 2013, 419, 95–99.
- S. Prabu, R. Nagalakshmi, J. Balaji, & P. Srinivasan, Synthesis, crystal growth, studies on vibrational spectroscopy and nonlinear optical properties of 4-methoxy-4'-chlorochalcone, *Mater. Res. Bull.*, 2014, 50, 446–453.
- S. Shettigar, K. Chandrasekharan, G. Umesh, B. K. Sarojini, Studies on nonlinear optical parameters of bis-chalcone derivatives doped polymer, *Polymer*, 2006, 47, 3565.
- A. Delavaux, B. Nicot, J. Maynadie, D. Lavabre, Ca2+ vs. Ba2+ electrochemical detection by two disubstituted ferrocenyl chalcone chemosensors. Study of the ligand-metal interactions in CH3CN, J. Organometalic. Chem., 2007, 692, 874.
- E. I. Gasull, S. E. Blanco, F. H. Ferretti), A theoretical and experimental study of adsorption from dilute cyclohexane solutions of nonelectrolytes: 4-X-chalcones on silica gel, J. Mol. Struct. (Theochem), 2002, 579, 121.
- 28.Gaussian 09, Revision D.01,
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
- M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
- G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
- A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
- M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
- Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
- J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
- K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
- K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
- M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
- V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
- O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
- R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
- P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
- O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
- and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
- 29.H.B. Schlegel, Optimization of equilibrium geometries and transition structures, J. Comput. Chem., 1982, 3, 214-218.

- 30.J. Zinczuk, A.E. Ledasma, S.A. Brandan, O.E. Piro, J.J.L. Gonzalez, A.B. Atabef, Structural and vibrational study of 2-(2'- furyl)-4,5-1 H dihydroimidazole, J. Phys. Org. Chem., 2009, 22, 1166-1177.
- 31. N. Ramesh Babu et al., Synthesis and spectral characterization of hydrazone derivative of furfural using experimental and DFT methods, *Spectrochim Acta.*, **2014**, 120, 314-322.
- H. Alyar, Z. Kantarci, M. Bahat, E. Kasap, Investigation of torsional barriers and nonlinear optical (NLO) properties of phenyltriazines, J. Mol. Struct., 2007, 834,516–520.
- R.S. Mulliken, Electronic Population Analysis on LCAO [Single Bond] MO Molecular Wave Functions. J. Chem. Phys., 1955, 23, 1833– 1840.
- 34 K. Rastogi, M.A. Palafox, R.P. Tanwar, L.Mittal, 3,5-Difluorobenzonitrile: ab initio calculations, FTIR and Raman spectra, *Spectrochim.Acta.*, **2002**, 58,1989.
- 35. M. Silverstein, G.C. Basseler, C. Morill, Spectrometric Identification of Organic Compounds, Wiley, New York, 1981.
- G. M. Treboux, D. Maynau, J.P. Malreu, Combining Molecular Mechanics with Quantum Treatments for Large Conjugated Hydrocarbons.
 A Geometry-Dependent Heisenberg Hamiltonian, J. Phys. Chem., 1995, 99, 6417.
- .37. D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Graselli, The Hand Book of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, New York, **1991.**
- R. L. Prasad, A. Kushwaha, M. Suchita, R. A. Kumar, Y. Yadav, Infrared and ab initio studies of conducting molecules: 2,5-Diamino-3,6dichloro-1,4-benzoquinone, *Spectrochim. Acta A.*, 2008, 69, 304.
- 39. D.F. Eggers, W.E. Lingsen, C--H Vibrations in Aldehydes, Anal. Chern., 1956, 28, 1328.
- 40. W. Kemp, Organic Spectroscopy, Macmillan Press Ltd., London, 1991.
- 41.] L. Padmaja, NBO analysis and vibrational spectra of 2,6-bis(p-methyl benzylidene cyclohexanone) using density functional theory, *Spectrochimica Acta A.*, **2009**, 74, 349-356.
- 42. G. Socrates, Infrared and Raman charactertisitic Frequency, third ed., John Wiley & Sons Ltd., Chichester, 2001.
- 43. K. Udayalakshmi, K. Ramamurthi, Growth and characterization of 2,6-dibenzylidene cyclohexa none single crystal, *Cryst. Res. Technol.*, **2005**, 40 (12), 1165.